
Solving N-Queen Problem by Prediction

Lijo V. P.
School of Computing Science and Engineering,

VIT University, Vellore

Jasmin T. Jose
School of Computing Science and Engineering,

VIT University, Vellore

Abstract– The classic problems lead the researchers to
innovate general solutions for similar class of problems. One
of the well-known problems and its solution are the 8-Queen
puzzle and back tracking. At many cases back tracking may
consider as brute force, but it is not true. It is not necessary to
find a solution from the point where we stand as sub-solution
and proceed for final solution by tracking one of the branches
optimistically, rather selecting a solution which is different
completely. Backtracking is effective method to find solutions
for a problem which is have more optional path to consider.
But this is not computationally efficient. In this paper, I have
proposed a novel method which is computationally efficient,
and it is predicting the solution with more accuracy.

Index Terms:– Backtracking, Classic Problem, Quadratic
Algorithm

I. INTRODUCTION
The classic problem, N-queen puzzle is an ever challenging
problem in computer science. Current literature gives many
solutions to this problem, but they suffer with its
computational complexities. A well-known solution for this
Queen puzzle is backtracking which is with very high time
complexity. The complexity exponentially increases as n
increases. An interesting fact is that there is no guarantee to
increase the number of solutions as the n increases. For an
instance the number solutions for 6-Queen puzzle is lesser
than the number of solutions for 5-Queen problem.
In back tracking algorithm, procedure starts from a point of
user choice and proceed with any one of the choice of next
step. From the current step, try to find next level of solution
from a list of choices. This process will be iterated until
either a final solution arrived or no possible solution. Then
start to backtracked to a previous step, and repeat its
previous step of process by selecting another choice.
Naive Algorithm demonstrates the method where all the
queen configurations are identified and display some of
them which are satisfied the given constrains. The given
constrain is the queens should not attack each other in this
given configuration. If such a configuration is available
then select and print. This algorithm gives a general view
that it problem means. The challenge is laid under the
complexity to find a configuration which follows the
conditions. Trial and error method can be followed, but it is
quite expensive in computation. The aim is to arrange the
Queens one after other in different rows, user can begin this
process leftmost row and when user put a queen in a raw,
user search for any conflicts with available queens. In the
current row, suppose the player find a column for which
there is no conflict, then player take this column and row
part of the solution. If player failed to find a column with
no clash then back track. The right choice of the size n is

eight in case of this classic problem. Because n = 8 is large
enough to demonstrate the beauty, challenges and
complexity of the puzzle. If you could find an efficient
solution for this 8-queen problem, then it can be extended
to N-queen.
Backtracking is a general algorithm to find complete
solutions for some computational problems which have
more number of solutions. This algorithm builds the
solution by adding qualified candidates to solution one by
one. This will immediately reject the candidate if it
identified as this candidate cannot be a part of the solution.
The partial candidate solution is the l queens arranged in
firs l rows. The backtracking is only applicable if the
solution is an incremental model and it is supporting a
sudden way to find candidate solutions to reach the final
solutions.
The sections of the paper are arranged as follows: the
Section 2 is dedicated for literature survey. Section 3 gives
insight in to the proposed algorithm and Section 4 describes
the results of the proposed algorithm. The Section 5 depicts
the conclusion and future work. Acknowledgements
included in Section 6 and finally quoted the references.

II. LITERATURE SURVEY

Algorithm strategies are the approach to solve
computational problems. It may combine many approaches
together to solve a problem. We follow different strategies
based on the problem. Algorithm can be implemented
either iteration or recursive in structure. Dynamic
Programming, Branch-and-Bound, Bruit Force,
Backtracking, Greedy, Recursive, Heuristic, etc. are some
the important algorithm strategies.
II.1 Backtracking Strategy
Backtracking algorithms are applicable for NP-Complete
problems. Priestley and Ward [1] presented the details
about the backtracking and its applications. They have
clearly explained the preliminaries of the algorithm and
gave a clear picture of the 8-queen puzzle. The solution for
the problem could be achieved through tree structure
representation of the choices. The proposed procedure
could reduce the number of test cases to a sum of 15,720.
The time complexity was reduced by reducing test cases.
Pre –analysis was used to reduce the test cases. They used
bush pruning technique for further improvement. Finally
hybrid approach of pre-analysis and bust pruning gave
better result.
Ginsberg [2] introduced dynamic backtracking algorithm
but that does not solve constraint satisfaction problem
dynamically. Gerald and Thomas [3] proposed some
alteration to support a dynamic constraint satisfaction. But
this method suffers due to heavy time complexities.

Lijo V. P. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3844-3848

www.ijcsit.com 3844

M M Noori and B T Razaie [4] expose and implemented an
improved backtracking algorithm for identifying t-designs
which is proposed by J. Combin. Des. According to Noori,
the algorithm uses a systematic method to derive new
useful equations from the initial equations which are useful
in speeding up the classical backtracking algorithm. The
reader can refer [5] to get brief description of backtracking
algorithms and their applications.
Bessière et al. [6] proposed a asynchronous backtracking
algorithm for distributed constraint satisfaction problems.
This is based on distributed backtracking with storage of
the previous results to reduce the total number of trials.
M.A. Gutierrez-Naranjo et al. presented the N-queen
problem in conjunctive normal form. They described the
queen problem as a SAT problem by assuming the each P-
systems send truth values as Yes or No. Pioneer solution
have presented to the N-queens puzzle based on Membrane
Computing [7]. Algorithm 1 gives an insight on back
tracking algorithm which is based on depth-first recursive
search.

Algorithm 1: Backtracking general algorithm [8]
Checks whether solution has been found
 If found solution, return it
else for each choice that can be made
take that choice
Recurrence
If recursion gives a positive result, return it
 If no choices remain, return failure

II.2 Computational Complexities
Vipin Kumar [9] gives a detailed survey on constraint
satisfaction problem algorithms. Some of them solve the
problems by constraint propagation and rest of them are
solving problem by direct approach though backtracking. A
survey on complexity analysis of space-bounded algorithms
for constraint satisfaction problems is proposed by J
Roberto et al.[10]. They cover unrestricted, size-bounded,
relevance-bounded learning and their complexities.
J. H Patterson [11] presented the computational results of
the minimized and maximized problems in a general way.
They have considered both mainframe and personal
computer experiences. Optimal solution for small problems
is very easily attained in PCs but for large problems quite
difficult to achieve result in PCs.
John Gaschnig [12] proposed a fast backtracking algorithm
which is reduced its computational complexities by
eliminating redundant tests. He tried to exploit space-time
trade off maximum in his algorithm. According to John, it
is hard to eliminate all redundant tests in computationally
efficient manner. But it is possible to eliminate all
redundant test cases with heuristic approach. In [13],
Jordan Bell and Brett Stevens discussed the computational
approaches of n queen’s problem. In this survey paper they
have given concentration for different approaches and
results for the same problem.
Erbak and Tanik given a detailed study of algorithms used
for n-queens problem in [14]. They grouped the total
algorithms in different categories based on the outcome of
the algorithms. As per their view they are three types of

algorithms based on their outcomes. Some of them generate
all solutions and others are produce fundamental or subset
of total number of solutions. Brute-force trial and error and
backtracking are examples of algorithms which generate
complete solutions. The algorithms based on group
properties of results, symmetric elimination and test-based
produce only basic solutions.

III. PROPOSED ALGORITHM
In this section, discuss the details about the proposed
algorithm for the N-queen problem. The N is a positive
integer. In this algorithm, predicts the solution
systematically and then check for the correctness of the
solution by performing trial on the actual configuration.
The probability to quality this as solution is approximately
73%. The efficiency of this algorithm is improved by
reducing the time complexity. The prediction of the
solution is done by mathematical progression approach.
Initially, designate each row of the N X N matrix with the
value 0 to N-1. For instance, first row is designated as ‘0’,
second row is ‘1’ and so on. The combinations of the value
from 0 to N-1 represent the arrangement of the Queens on
the board. For example, in 5 X 5 board, 13042 is
representing the queens positions on the board, where
queen in first column is at row 2, in second column- row 4,
third column-row 1, fourth column-row 4 and fifth column-
row 3.
These combinations of the numbers can be taken as the
number with N digits with base N. In this case of this
example 13042 is the number with 5 digits and base 5. The
given 13042 is a solution for the 5 X 5 queen puzzle. Close
analysis of this number is giving an insight that the adjacent
digits of the numbers have difference with value 2. The
digit 1 and 3 have difference 2, the digits 3 and 0 has
difference 2, and so on. This point is an important clue in
this algorithm that we can find next solution only after a
distance of 2* 55 if the first value to change to 3 or 4. By
adding the value 2 * 55 to the given solution 13042 will
give next predicted value. For the correctness of the value
place the queens in the respective rows and check for the
clashes. If there is no clash then display it as a solution, else
reject that candidate solution and predict next potential
candidate.

Algorithm 2: Candidate Selection.
Function Candidate-Selection(N, Init)
 if Init >= NN

 Return;

 else
 while k < N do
 check digits in init at k and at k+1
 if difference is greater than one
 k=k + 1
 else
Init = Init + predict_value(N, Init)
 end if
 end while
Display Init;

Lijo V. P. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3844-3848

www.ijcsit.com 3845

Fig. 1: The 3 5 7 1 6 0 2 4 placement of the 8 X 8 queen.

Algorithm 2, is giving the candidate selection for the
solution. This algorithm receives the value N and Init as
arguments. Where N is the number of columns and Init is
the initial value. For instance, 0 2 4 1 3. This is the solution
with minimum value, as in case base 5. The predict value
function will find next possible value to be added with Init
to get next candidate for solution. Possibly the next solution
is 0 3 1 4 2. The difference of the values of first and second
solutions is 03142 -02431= 711, which approximately 54.
Because the digits with weight 53, 52,51 and 50 are changed
in the first solution to get second solution. The value 52 is
change as negative and others are positive. So while
iterating by skipping this many steps is reducing the time
complexity with an extend level.
Fig: 1 illustrates the 3 5 7 1 6 0 2 4 placement of the 8 X 8
queen. Fig. 2 shows the clashes in 8 Queen puzzle. Here,
the queen in column 6 clash with other queens. There is no
choice to place the queen in 6th column. So it is necessary
to backtrack to the 5th position, i.e. 5th column’s placement
of queen. Then, try to find some other solution to place the
queen in the 5th column. It is possible to place the queen in
first row of 5th column. Then it is possible to place the
queen in the 6th column-3rd row. After successful placement
of 6th queen then proceed to place the queen. It is possible
to find a place at 7th row of 7th column. Finally, 8th queen
will be failed to find a place in 8th column without a class.
So it is necessary to backtrack to 7th stage, then 6th and so
on. But this is not necessary in this proposed algorithm.
Because the prediction will reduce number of trials and
give solution.

Fig. 2: A Clash in 8-Queen puzzle

Working Principle
The given algorithm follows predictive trial and error
method. In brute-force trial and error, try all possible
combinations to get solutions. In case N dimensional
problem there with N! combinations can be prepared and it
is mandatory to check each and every combinations. This
will give the complexity of O(NN+1). The prediction for the
potential candidates will reduce number of combinations
considerably. The reduction of the combinations is
exponent of N. For an instant, 03142 -02431= 711, where
the reduction is 711, which is approximate 54. Without
checking each and every combinations try the combinations
after a gap of exponent of N. The function call for
Candidate-selection is initiated only when the combination
contains no duplicate digits. The checking for the
duplicates is very simple as checking sum of digits in the
combination is exactly equal to the (N-1)*(N)/2 if N is even
and ensure that all digits are available. If all the digits are
not present in the combination then there is duplication
occurred. Here we assume that s is -1 or +1 depends on the
sign of the digits which is going to be changed and the i is
the position of the from right and position starts from 0.
And d is the difference between the existing value at i and
value to be replaced. So predicted value from position Pj is
as follows

i
j ndsP ** (1)

So predicted value for the potential candidate is Cv,
previous candidate solution PreCs and Potential Candidate
Cp.

jPCv  (2)

And

CvpreCsCp  (3)

Cp gives the potential candidate and the system will check
for its correctness.

If Cp qualify the test,

PrevCs = Cp
Retrn PrevCs

The PrevCs gives the next solution for the puzzle with
given size N. The choice of the Init value determines the
completeness of the solutions. So a careful selection of the
Init value is necessary to get complete solutions with better
efficiency. Some statistical approaches is applicable to
determine the Init value. Suppose the Init value selected as
a value greater than value of a solution, and then the
algorithm never find that solution. The prediction permits
to go in one direction from smaller value to higher only. No
reverse check is allowing for maintaining efficiency. To
avoid such a situation to miss the solutions, choose the Init
value as zero. But this cause to increase the number of trial
in a considerable manner.

Lijo V. P. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3844-3848

www.ijcsit.com 3846

IV. RESULTS

Performance Improvement
The proposed algorithm finds solution for the problem
efficiently. Even though the complexity increases as the
dimension increases, it is giving better result when compare
with existing algorithms. The backtracking algorithm
considers as the most effective algorithm for Queen puzzle,
but it is computationally highly expensive. It is expressed
as O(n!). The proposed algorithm reduces time complexity
by omitting much iteration. The iterations of the candidate
selection process is reduced by predicting the next possible
candidate. By prediction of the potential candidates, it is
possible to reducing O(n3) iterations. The complexity of the
algorithm is reduced by O(n3). And actual running time is
very less when compared to backtracking algorithm. This is
a great attainment in this case of branch type of problems.
Table 1: depicts the sample values of N-queen puzzle. It is
clearly gives the performance improvement of the proposed
algorithm. The number of trails for 13-queens gets reduced
to 84,034,432 where the counterpart has 89,088,384 [1]. In
this paper, I consider the results of a hybrid [1] algorithm
which is running on single node.

The result of the algorithm based on the accuracy of the
prediction. Even though prediction is more accurate but it
needs to be improved to get 100% accuracy. Complete
accurate prediction is not possible as the size of the
problem increases exponentially. Computational
complexity is reduced in a considerable manner. Single
node computation is considered here. It is possible to
execute this algorithm in parallel or distributed
environment. By giving proper Init value to every node in
the given environment we can reduce the running time in
factor of n, where n is the number of nodes. The nodes can
process the algorithm independently if getting proper Init
value. So there should be a leader/ initiator to calculate and
distribute Init values among different nodes in the system.
Every nodes can finish their job independently and parallel.
Fig. 3 illustrates the comparison of number of trials in
different approaches such as Brute Force Trial and Error,
Pre-Analysis, Hybrid and Prediction. Fig. 4 shows CPU
time (in Seconds) for various approaches for 13 Queens and
14 Queens puzzles.

Table 1: N queens puzzle sample results.

Method Used
No. of Trials CPU Time

13 Queens 14 Queens 13 Queens 14 Queens
Without Pre-analysis 130,150,618 899,139,237 66.45 112.21
Pre-analysis 100,515,902 654,151,660 54.32 89.29
Hybrid 89,088,384 569,929,575 56.01 109.09
Proposed Algorithm 84,034,432 543,672,172 44.14 87.56

Fig. 3: Comparison of Number of Trails in Various Approaches.

0

1,00,00,000

2,00,00,000

3,00,00,000

4,00,00,000

5,00,00,000

6,00,00,000

7,00,00,000

No. of Trials (9
Queens)

No. of Trials (11
Queens)

Trial & Error

Pre‐analysis

Hybrid

Proposed Algorithm

Lijo V. P. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3844-3848

www.ijcsit.com 3847

Fig. 4: Comparison of CPU time of Trials in Various Approaches

V. CONCLUSIONS AND FUTURE WORK
In this paper I have proposed an algorithm which has less
computational complexity when compare with
backtracking algorithm to solve N-queen puzzle. The
proposed algorithm works on prediction of potential
candidate solution, based on arithmetic progression. I
conducted the experiments on single machine and
expecting improved results from a distributed computing
environment. As future work, try to optimize this algorithm
by improving the prediction technique and reduce the
number of false prediction.

ACKNOWLEDGMENT
My thanks to Mr. Lijo V. P who has contributed towards
completion of this work. I am extending my gratitude to my
colleagues in VIT University Vellore and friends in MES
College of Engineering, Kuttippuram for their valuable
guiding and sharing.

REFERENCES
1. Priestley, Hilary A., And Martin P. Ward. "A Multipurpose

Backtracking Algorithm." Journal Of Symbolic Computation 18.1:
1-40, (1994).

2. Ginsberg, Matthew L., And David Mcallester. "Gsat And Dynamic
Backtracking." Principles And Practice Of Constraint Programming.
Springer Berlin Heidelberg, (1994).

3. Verfaillie, Gérard, And Thomas Schiex. "Dynamic Backtracking For
Dynamic Constraint Satisfaction Problems." In Proceedings Of The
Ecai-94 Workshop On Constraint Satisfaction Issues Raised By
Practical Applications, (1994).

4. M. M. Noori And B. Tayfeh Rezaie. "A Backtracking Algorithm For
Finding T-Designs." Designs, Codes And Cryptography 32.1-3: 185-
191, (2004).

5. P. B. Gibbons, “Computational Methods In Design Theory, In: The
Crc Handbook Of Combinatorial Designs” (C. J. Colbourn And J. H.
Dinitz,Eds.), Crc Press Series On Discrete Mathematics And Its
Applications, Pp. 718–740, (1996).

6. Bessière, Christian, Et Al. "Asynchronous Backtracking Without
Adding Links: A New Member In The Abt Family." Artificial
Intelligence 161.1: 7-24, (2005).

7. Gutiérrez-Naranjo, Miguel A., Et Al. "Solving The N-Queens Puzzle
With P Systems." Seventh Brainstorming Week On Membrane
Computing 1: 199-210, (2009).

8. Yan, Jun, And Jian Zhang. "Backtracking Algorithms And Search
Heuristics To Generate Test Suites For Combinatorial Testing."
Computer Software And Applications Conference, 2006.
Compsac'06. 30th Annual International. Vol. 1. Ieee, (2006).

9. Kumar, Vipin. "Algorithms For Constraint-Satisfaction Problems: A
Survey." Ai Magazine 13.1: 32, (1992).

10. Bayardo, Roberto J., And Daniel P. Miranker. "A Complexity
Analysis Of Space-Bounded Learning Algorithms For The
Constraint Satisfaction Problem." Proceedings Of The National
Conference On Artificial Intelligence. (1996).

11. Patterson, James H., Et Al. "Computational Experience With A
Backtracking Algorithm For Solving A General Class Of Precedence
And Resource-Constrained Scheduling Problems." European
Journal Of Operational Research 49.1: 68-79, (1990).

12. Gaschnig, John. "A General Backtrack Algorithm That Eliminates
Most Redundant Tests." Ijcai. (1977).

13. Bell, Jordan, And Brett Stevens. "A Survey Of Known Results And
Research Areas For N-Queens." Discrete Mathematics 309.1: 1-31,
(2009).

14. C. Erbas, M.M. Tanik, “N-Queens Problem And Its Algorithms”,
Technical Report 91-Cse-8, Dept. Of Comp. Sci. And Eng., Southern
Methodist University, (1991).

0

2

4

6

8

10

12

CPU Time (9 Queens) CPU Time (10
Queens)

Trial & Error

Pre‐analysis

Hybrid

Proposed Algorithm

Lijo V. P. et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3844-3848

www.ijcsit.com 3848

